Evaluation of cigarette smoke-induced emphysema in mice using quantitative micro-computed tomography.
نویسندگان
چکیده
Chronic cigarette smoke (CS) exposure provokes variable changes in the lungs, and emphysema is an important feature of chronic obstructive pulmonary disease. The usefulness of micro-computed tomography (CT) to assess emphysema in different mouse models has been investigated, but few studies evaluated the dynamic structural changes in a CS-induced emphysema mouse model. A novel micro-CT technique with respiratory and cardiac gating has resulted in high-quality images that enable processing for further quantitative and qualitative analyses. Adult female C57BL/6J mice were repeatedly exposed to mainstream CS, and micro-CT scans were performed at 0, 4, 12, and 20 wk. Emphysema was also histologically quantified at each time point. Air-exposed mice and mice treated with intratracheal elastase served as controls and comparisons, respectively. End-expiratory lung volume, corresponding to functional residual volume, was defined as the calculated volume at the phase of end-expiration, and it evaluated air trapping. The end-expiratory lung volumes of CS-exposed mice were significantly larger than those of air controls at 12 and 20 wk, which was in line with alveolar enlargement and destruction by histological quantification. However, CS exposure neither increased low attenuation volume nor decreased the average lung CT value at any time point, unlike the elastase-instilled emphysema model. CS-exposed mice had rather higher average lung CT values at 4 and 12 wk. This is the first study characterizing a CS-induced emphysema model on micro-CT over time in mice. Moreover, these findings extend our understanding of the distinct pathophysiology of CS-induced emphysema in mice.
منابع مشابه
CALL FOR PAPERS Real-time Visualization of Lung Function: from Micro to Macro Evaluation of cigarette smoke-induced emphysema in mice using quantitative micro-computed tomography
Sasaki M, Chubachi S, Kameyama N, Sato M, Haraguchi M, Miyazaki M, Takahashi S, Betsuyaku T. Evaluation of cigarette smokeinduced emphysema in mice using quantitative micro-computed tomography. Am J Physiol Lung Cell Mol Physiol 308: L1039–L1045, 2015. First published March 27, 2015; doi:10.1152/ajplung.00366.2014.—Chronic cigarette smoke (CS) exposure provokes variable changes in the lungs, an...
متن کاملQuantification of Lung Fibrosis and Emphysema in Mice Using Automated Micro-Computed Tomography
BACKGROUND In vivo high-resolution micro-computed tomography allows for longitudinal image-based measurements in animal models of lung disease. The combination of repetitive high resolution imaging with fully automated quantitative image analysis in mouse models of lung fibrosis lung benefits preclinical research. This study aimed to develop and validate such an automated micro-computed tomogra...
متن کاملHeme oxygenase-1-mediated autophagy protects against pulmonary endothelial cell death and development of emphysema in cadmium-treated mice.
Pulmonary exposure to cadmium, a major component of cigarette smoke, has a dramatic impact on lung function and the development of emphysema. Cigarette smoke exposure induces heme oxygenase-1 (HO-1), a cytoprotective enzyme. In this study, we employed a truncated mouse model of emphysema by intratracheal instillation of cadmium (CdCl2) solution (0.025% per 1 mg/kg body wt) in HO-1(+/+), HO-1(-/...
متن کاملElastin protein levels are a vital modifier affecting normal lung development and susceptibility to emphysema.
Cigarette smoking is the strongest risk factor for emphysema. However, sensitivity to cigarette smoke-induced emphysema is highly variable, and numerous genetic and environmental factors are thought to mitigate lung response to injury. We report that the quantity of functional elastin in the lung is an important modifier of both lung development and response to injury. In mice with low levels o...
متن کاملProgression parameters for emphysema: a clinical investigation.
In patients with airflow limitation caused by cigarette smoking, lung density measured by computed tomography is strongly correlated with quantitative pathology scores of emphysema, but the ability of lung densitometry to detect progression of emphysema is disputed. We assessed the sensitivity of lung densitometry as a parameter of disease progression of emphysema in comparison to FEV(1) and ga...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Lung cellular and molecular physiology
دوره 308 10 شماره
صفحات -
تاریخ انتشار 2015